Comparison and Selection among AI Models: A Heterodox Analysis of Conditions
DOI:
https://doi.org/10.26867/Keywords:
Artificial intelligence, transparency, sustainability, black-box dilemma, biases and risks, heterodox approaches.Abstract
This paper presents a heterodox review of the development of everyday implementations of artificial intelligence algorithms, their biases, and the risks they pose to human life due to a lack of transparency, or
the black-box effect. It focuses on evaluating a problem that has influenced the development of artificial intelligence: the ethical–economic dilemma of the black box and its associated paradox. Concentrating on this dilemma—whether transparency should prevail over algorithmic performance, and how each is valued in light of biases and risks—helps to clarify the paradox that underlies the current dichotomy between the Anglo-Saxon and continental European worlds. Using a bibliometric–narrative and critical–hermeneutic approach, and drawing on the theoretical and methodological frameworks of Austrian economics and neoinstitutional economics (with their tradition of analyzing other black boxes such as the State, the public sector, and welfare economics), this paper offers an exposition and explanation of the problem, its scope, and the prospects for a future convergence of positions on the matter.
References
Alonso MA, Sánchez-Bayón A & Gallego-Morales D (2024). Enhancing Visual Literacy and Data Analysis Skills in Macroeconomics Education: A Beveridge Curve Analysis Using FRED® Data. In: Valls Martínez M & Montero J (eds) Teaching Innovations in Economics. Springer, Cham., p. 51-76 https://doi.org/10.1007/978-3-031-72549-4_3
Al-Rashaida M, Moustafa A, Mohsen W (…) & Khan A (2025). AI Strategies for Inclusive Education Resources and Support, AI in Learning, Educational Leadership, and Special Education, p. 349-380. 10.4018/979-8-3373-0573-8.ch012.
Ammar A (2025). systematic and bibliometric review of artificial intelligence in sustainable education: Current trends and future research directions, Sustainable Futures, 10, 101033. DOI: 10.1016/j.sftr.2025.101033.
Andreeva O, Ivanov V, Nesterov A & Trubnikova T (2019). Facial Recognition Technologies in Criminal Proceedings: Problems of Grounds for the Legal Regulation of Using Artificial Intelligence. Tomsk State University Journal 449: 201–212.
Awad E, Dsouza S, Kim R (…) & Rahwan I (2018). The Moral Machine Experiment. Nature, 563: 59–64. http://dx.doi.org/10.1038/s41586-018-0637-6
Benkler Y (2019). Don’t let industry write the rules for AI. Nature 569:161.
Biller-Andorno N & Biller A (2019). Algorithm-Aided Prediction of Patient Preferences - An Ethics Sneak Peek. New England Journal of Medicine, 381(15):1480-1485. https://doi.org/10.1056/NEJMms1904869
Boettke P (2000). Socialism and the market: The socialist calculation debate re-visited. London: Routledge.
Bollerman M (2025). Digital Sovereigns Big Tech and Nation-State Influence. arXiv preprint arXiv:2507.21066.
Buragohain D & Chaudhary S (2025). Navigating ChatGPT in ASEAN Higher Education: Ethical and Pedagogical Perspectives, Computer Applications in Engineering Education, 33(4). 10.1002/cae.70062.
Cath C (2018). Governing artificial intelligence: ethical, legal and technical opportunities and challenges. Phil. Trans. R. Soc. A.37620180080. http://doi.org/10.1098/rsta.2018.0080
Challoumis C (2024). Charting the course-The impact of AI on global economic cycles. In XVI International Scientific Conference. Copenhagen: ISG Konf. (pp. 103-127).
Chaudhary G (2024). Unveiling the black box: Bringing algorithmic transparency to AI. Masaryk University Journal of Law and Technology, 18(1), 93-122.
Chen Y, Zhong R, Ri N (…) & McKeown K (2023). Do models explain themselves? counterfactual simulatability of natural language explanations. arXiv preprint arXiv:2307.08678.
Cheong B (2024). Transparency and accountability in AI systems: safeguarding wellbeing in the age of algorithmic decision-making. Frontiers in Human Dynamics, 6, 1421273.
Dietvorst B, Simmons J & Massey C (2018). Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them. Management Science 64(3). https://doi.org/10.1287/mnsc.2016.2643.
Doroudi S (2023). The Intertwined Histories of Artificial Intelligence and Education. Int J Artif Intell Educ 33, 885–928. https://doi.org/10.1007/s40593-022-00313-2
Dumitru C, Abdulsahib G, Khalaf O & Bennour A (2025). Integrating artificial intelligence in supporting students with disabilities in higher education: An integrative review, Technology and Disability, 10.1177/10554181251355428.
European Parliament. (2023). EU AI Act: First regulation on artificial intelligence (URL: https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence).
Floridi L (2024). Why the AI hype is another tech bubble. Philosophy & Technology, 37(4), 128.
Floridi L, Cowls J, Beltrametti M (…) Vayena E (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds & Machines 28, 689–707. https://doi.org/10.1007/s11023-018-9482-5
Foffano F, Scantamburlo T & Cortés A (2023). Investing in AI for social good: an analysis of European national strategies. AI & society, 38(2), 479-500.
Gofman M, & Jin Z (2024). Artificial intelligence, education, and entrepreneurship. The Journal of Finance, 79(1), 631-667. DOI: 10.1111/jofi.13302
Grimmelikhuijsen S (2023). Explaining why the computer says no: Algorithmic transparency affects the perceived trustworthiness of automated decision‐making. Public Administration Review, 83(2), 241-262.
Hayek F (1988). The fatal conceit. Chicago: The University of Chicago.
Huerta de Soto J (2008). The Austrian School: Market Order and Entrepreneurial Creativity. Cheltenham: Edward Elgar Publishing Ltd.
Huerta de Soto J (2010). Socialism, Economic Calculation and Entrepreneurship. Cheltenham: Edward Elgar Publishing Ltd
Huerta de Soto J, Sánchez-Bayón A & Bagus P (2021). Principles of Monetary & Financial Sustainability and Wellbeing in a Post-COVID-19 World: The Crisis and Its Management. Sustainability, 13(9): 4655 (1-11). https://doi.org/10.3390/su13094655
Jahin M, Naife S, Saha A & Mridha M (2023). Ai in supply chain risk assessment: A systematic literature review and bibliometric analysis. arXiv preprint arXiv:2401.10895.
JCR (2019) Impact factor into Journal Citation Reports (URL: https://clarivate.com/webofsciencegroup/solutions/journal-citation-reports).
LaGrandeur K (2024). AI and Reverse Mimesis: From Human Imitation to Human Subjugation?. Mimetic Posthumanism: Homo Mimeticus 2.0 in Art, Philosophy and Technics, 5, 321.
Lipton Z (2017). The Mythos of Model Interpretability. https://arxiv.org/abs/1606.03490
Marcus E & Teuwen J (2024). Artificial intelligence and explanation: How, why, and when to explain black boxes. European Journal of Radiology, 173, 111393.
Mazurowski M (2020). Artificial Intelligence in Radiology: Some Ethical Considerations for Radiologists and Algorithm Developers Academic Radiology 27(1):127-129. https://doi.org/10.1016/j.acra.2019.04.024
Menger C (2007[1871]). Principles of Economics. Auburn: Mises Institute.
Mises L (2000[1922]). Socialism: An Economic and Sociological Analysis. Auburn: Mises Institute.
Mises L (1949). Human action. A treatise on Economics. New Haven: Yale University Press.
Neumann O, Guirguis K, & Steiner R (2024). Exploring artificial intelligence adoption in public organizations: a comparative case study. Public Management Review, 26(1), 114-141. DOI: doi/abs/10.1080/14719037.2022.2048685
Ngiam K & Khor W (2019). Big data and machine learning algorithms for health-care delivery. The Lancet Oncology, 20(5): E262-E273. http://dx.doi.org/10.1016/S1470-2045(19)30149-4
Noncheva D & Baykin A (2025). Innovate approaches to crisis management and economic recovery: the role of artificial intelligence. ББК 65.9 (4Укр) 261-18я431 Ф 59, 455.
Oh S & Sanfilippo M (2025). Responsible AI in academia: policies and guidelines in US universities, Information and Learning Sciences, 10.1108/ILS-03-2025-0042.
Petkus H, Hoogewerf J & Wyatt JC. (2020). What do senior physicians think about AI and clinical decision support systems: Quantitative and qualitative analysis of data from specialty societies. Clin Med, 20(3):324-328. doi: 10.7861/clinmed.2019-0317. PMID: 32414724; PMCID: PMC7354034.
Rivas E, Núnez M, Rodríguez J & Rubio M (2024). Revisión de la producción científica sobre Storytelling mediado por tecnología entre 2019 y 2022 a través de SCOPUS. Texto Livre, 17, e51392.
Romanova A (2025). Analysis of Interfaces Informativeness Issues in the Development of Autonomous Artificial Intelligence Systems for Corporate Management. Available at SSRN 5347689.
Sánchez-Bayón A (2015). Filosofía del aula inteligente del S. XXI: críticas urgentes y necesarias. Bajo Palabra, 10: 259-269. DOI: 10.15366/bp2015.10.022
Sánchez-Bayón A (2020). Renovación del pensamiento económico-empresarial tras la globalización, Bajo Palabra, 24: 293-318 DOI: https://doi.org/10.15366/bp.2020.24.015
Sánchez-Bayón A (2021).The digital economy review under the technological singularity: technovation in labour relations and entrepreneur culture. Sociología y Tecnociencia, 11(2). 53-80. DOI: https://doi.org/10.24197/st.Extra_2.2021.53-80
Sánchez-Bayón, A. (2025a). ¿Cómo innovar en aprendizaje de gestión digital de riqueza y bienestar? Experiencia con monedas digitales socio-empresariales. AROEC, 8(1): 1-32
Sánchez-Bayón A (2025b). Bioética y biojurídica: una revision veinte años después. Encuentros Multidisciplinares, 27(79): 1-16
Sánchez-Bayón A (2025c). Revisión de las relaciones ortodoxia-heterodoxia en la Economía y la transición digital. Pensamiento, 81(314): 523-550. DOI:: 10.14422/pen.v81.i314.y2025.012
Sánchez-Bayón A, Urbina D, Alonso-Neira MA & Arpi R (2023). Problema del conocimiento económico: revitalización de la disputa del método, análisis heterodoxo y claves de innovación docente. Bajo Palabra, (34), 117–140. https://doi.org/10.15366/bp2023.34.006
Sánchez-Bayón, A., Alonso-Neira, M.A., Morales, D. (2024a). Aprender a emprender con IA y método de talento digital: Revisión de responsabilidad social universitaria. Iberoamerican Business Journal, SI 1(1): 48 – 63. https://doi.org/10.22451/5817.ibj2024.Spec.Ed.vol1.1.11094
Sánchez-Bayón A, Alonso MA, Miquel AB & Sastre FJ (2024b). Aprendizaje creativo e innovación docente sobre RSC 3.0, ODS y divisas alternativas. Encuentros Multidisciplinares, 78: 1-13
Sánchez-Bayón A, Sastre FJ & Sánchez LI (2024c). Public management of digitalization into the Spanish tourism services: a heterodox analysis. Review of Manageral Science, 18(4): 1-19. https://doi.org/10.1007/s11846-024-00753-1
Sánchez-Bayón A, Miquel-Burgos AB & Alonso-Neira MA (2025). Experience of learning technovation for i-entrepreneurship training: how to prepare the students for digital economy? Estrategia y Gestión Universitaria, 13(1), e8765. https://doi.org/10.5281/zenodo.14908364
Singla A (2024). Cognitive Computing Emulating Human Intelligence in AI Systems. Journal of Artificial Intelligence General Science (JAIGS), 1(1): e38. https://doi.org/10.60087/jaigs.v1i1.38
Smith A, Walsh J, Long J (…) Fisher C (2020). Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data. BMC Bioinformatics, 21, 119. https://doi.org/10.1186/s12859-020-3427-8
Smith D (2024). Austrian Economics. Piamonte: Amazon Italy.
Tahiru F (2021). AI in education: A systematic literature review. Journal of Cases on Information Technology (JCIT), 23(1), 1-20.
Tan K, Wu J, Zhou H, Wang Y & Chen J (2024). Integrating advanced computer vision and ai algorithms for autonomous driving systems. Journal of Theory and Practice of Engineering Science, 4(01), 41-48.
Teufel J, Torresi L & Friederich P (2023). Quantifying the intrinsic usefulness of attributional explanations for graph neural networks with artificial simulatability studies. In World Conference on Explainable Artificial Intelligence. Cham: Springer Nature Switzerland, p. 361-381.
Torres D (2023). Entre métricas y narraciones: definición y aplicaciones de la Bibliometría Narrativa. Anuario ThinkEPI, 17. https://doi.org/10.3145/thinkepi.2023.e17a30
Turing A (1950) Computing Machinery and Intelligence. Mind 49: 433-460
Wang L, Chen X, Zhang L, Li L, Huang Y, Sun Y, Yuan X, Davis C, Henstock P, Hodge P, Maciejewski M, Mu X, Ra S, Zhao S, Ziemek D & Fisher C. (2023). Artificial intelligence in clinical decision support systems for oncology. Int J Med Sci., 20(1):79-86. doi: 10.7150/ijms.77205.
Xie Y & Avila S (2025). The social impact of generative LLM-based AI. Chinese Journal of Sociology, 11(1), 31-57.
Zhu H, Sun Y & Yang J (2025). Towards responsible artificial intelligence in education: a systematic review on identifying and mitigating ethical risks, Humanities and Social Sciences Communications, 12(1). 10.1057/s41599-025-05252-6.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Moshe Yanovskiy, Yehoshua Socol

This work is licensed under a Creative Commons Attribution 4.0 International License.









